

    
      
          
            
  
telnetlib3

Python 3 asyncio Telnet server and client Protocol library.

Contents:



	Introduction
	Quick Example

	Command-line

	Features

	Further Reading





	API
	accessories

	client

	client_base

	client_shell

	server

	server_base

	server_shell

	slc

	stream_reader

	stream_writer

	telopt





	RFCs
	Implemented

	Not Implemented

	Additional Resources





	Contributing
	Developing

	Running Tests

	Style and Static Analysis





	History







Indexes


	Index


	Module Index







            

          

      

      

    

  

    
      
          
            
  [image: Travis Continuous Integration]
 [https://travis-ci.org/jquast/telnetlib3/][image: Coveralls Code Coverage]
 [https://coveralls.io/github/jquast/telnetlib3?branch=master][image: Latest Version]
 [https://pypi.python.org/pypi/telnetlib3][image: Downloads]
 [https://pypi.python.org/pypi/telnetlib3]
Introduction

telnetlib3 is a Telnet Client and Server library for python.  This project
requires python 3.3 and later, using the asyncio [http://docs.python.org/3.4/library/asyncio.html] module.


Quick Example

Authoring a Telnet Server using Streams interface that offers a basic war game:

import asyncio, telnetlib3

@asyncio.coroutine
def shell(reader, writer):
    writer.write('\r\nWould you like to play a game? ')
    inp = yield from reader.read(1)
    if inp:
        writer.echo(inp)
        writer.write('\r\nThey say the only way to win '
                     'is to not play at all.\r\n')
        yield from writer.drain()
    writer.close()

loop = asyncio.get_event_loop()
coro = telnetlib3.create_server(port=6023, shell=shell)
server = loop.run_until_complete(coro)
loop.run_until_complete(server.wait_closed())





Authoring a Telnet Client that plays the war game with this server:

import asyncio, telnetlib3

@asyncio.coroutine
def shell(reader, writer):
    while True:
        # read stream until '?' mark is found
        outp = yield from reader.read(1024)
        if not outp:
            # End of File
            break
        elif '?' in outp:
            # reply all questions with 'y'.
            writer.write('y')

        # display all server output
        print(outp, flush=True)

    # EOF
    print()

loop = asyncio.get_event_loop()
coro = telnetlib3.open_connection('localhost', 6023, shell=shell)
reader, writer = loop.run_until_complete(coro)
loop.run_until_complete(writer.protocol.waiter_closed)







Command-line

Two command-line scripts are distributed with this package.

telnetlib3-client


Small terminal telnet client.  Some example destinations and options:

telnetlib3-client nethack.alt.org
telnetlib3-client --encoding=cp437 --force-binary blackflag.acid.org
telnetlib3-client htc.zapto.org








telnetlib3-server


Telnet server providing the default debugging shell.  This provides a simple
shell server that allows introspection of the session’s values, for example:

tel:sh> help
quit, writer, slc, toggle [option|all], reader, proto

tel:sh> writer
<TelnetWriter server mode:kludge +lineflow -xon_any +slc_sim server-will:BINARY,ECHO,SGA client-will:BINARY,NAWS,NEW_ENVIRON,TTYPE>

tel:sh> reader
<TelnetReaderUnicode encoding='utf8' limit=65536 buflen=0 eof=False>

tel:sh> toggle all
wont echo.
wont suppress go-ahead.
wont outbinary.
dont inbinary.
xon-any enabled.
lineflow disabled.

tel:sh> reader
<TelnetReaderUnicode encoding='US-ASCII' limit=65536 buflen=1 eof=False>

tel:sh> writer
<TelnetWriter server mode:local -lineflow +xon_any +slc_sim client-will:NAWS,NEW_ENVIRON,TTYPE>








Both command-line scripts accept argument --shell=my_module.fn_shell
describing a python module path to a coroutine of signature
shell(reader, writer), just as the above examples.



Features

The following RFC specifications are implemented:


	rfc-727 [https://www.rfc-editor.org/rfc/rfc727.txt], “Telnet Logout Option,” Apr 1977.


	rfc-779 [https://www.rfc-editor.org/rfc/rfc779.txt], “Telnet Send-Location Option”, Apr 1981.


	rfc-854 [https://www.rfc-editor.org/rfc/rfc854.txt], “Telnet Protocol Specification”, May 1983.


	rfc-855 [https://www.rfc-editor.org/rfc/rfc855.txt], “Telnet Option Specifications”, May 1983.


	rfc-856 [https://www.rfc-editor.org/rfc/rfc856.txt], “Telnet Binary Transmission”, May 1983.


	rfc-857 [https://www.rfc-editor.org/rfc/rfc857.txt], “Telnet Echo Option”, May 1983.


	rfc-858 [https://www.rfc-editor.org/rfc/rfc858.txt], “Telnet Suppress Go Ahead Option”, May 1983.


	rfc-859 [https://www.rfc-editor.org/rfc/rfc859.txt], “Telnet Status Option”, May 1983.


	rfc-860 [https://www.rfc-editor.org/rfc/rfc860.txt], “Telnet Timing mark Option”, May 1983.


	rfc-885 [https://www.rfc-editor.org/rfc/rfc885.txt], “Telnet End of Record Option”, Dec 1983.


	rfc-1073 [https://www.rfc-editor.org/rfc/rfc1073.txt], “Telnet Window Size Option”, Oct 1988.


	rfc-1079 [https://www.rfc-editor.org/rfc/rfc1079.txt], “Telnet Terminal Speed Option”, Dec 1988.


	rfc-1091 [https://www.rfc-editor.org/rfc/rfc1091.txt], “Telnet Terminal-Type Option”, Feb 1989.


	rfc-1096 [https://www.rfc-editor.org/rfc/rfc1096.txt], “Telnet X Display Location Option”, Mar 1989.


	rfc-1123 [https://www.rfc-editor.org/rfc/rfc1123.txt], “Requirements for Internet Hosts”, Oct 1989.


	rfc-1184 [https://www.rfc-editor.org/rfc/rfc1184.txt], “Telnet Linemode Option (extended options)”, Oct 1990.


	rfc-1372 [https://www.rfc-editor.org/rfc/rfc1372.txt], “Telnet Remote Flow Control Option”, Oct 1992.


	rfc-1408 [https://www.rfc-editor.org/rfc/rfc1408.txt], “Telnet Environment Option”, Jan 1993.


	rfc-1571 [https://www.rfc-editor.org/rfc/rfc1571.txt], “Telnet Environment Option Interoperability Issues”, Jan 1994.


	rfc-1572 [https://www.rfc-editor.org/rfc/rfc1572.txt], “Telnet Environment Option”, Jan 1994.


	rfc-2066 [https://www.rfc-editor.org/rfc/rfc2066.txt], “Telnet Charset Option”, Jan 1997.






Further Reading

Further documentation available at https://telnetlib3.readthedocs.org/





            

          

      

      

    

  

    
      
          
            
  
API



	accessories

	client

	client_base

	client_shell

	server

	server_base

	server_shell

	slc

	stream_reader

	stream_writer

	telopt








            

          

      

      

    

  

    
      
          
            
  
accessories

Accessory functions.


	
encoding_from_lang(lang)

	Parse encoding from LANG environment value.

Example:

>>> encoding_from_lang('en_US.UTF-8@misc')
'UTF-8'










	
name_unicode(ucs)

	Return 7-bit ascii printable of any string.






	
eightbits(number)

	Binary representation of number padded to 8 bits.

Example:

>>> eightbits(ord('a'))
'0b01100001'










	
make_logger(name, loglevel='info', logfile=None, logfmt='%(asctime)s %(levelname)s %(filename)s:%(lineno)d %(message)s')

	Create and return simple logger for given arguments.






	
repr_mapping(mapping)

	Return printable string, ‘key=value [key=value …]’ for mapping.






	
function_lookup(pymod_path)

	Return callable function target from standard module.function path.






	
make_reader_task(reader, size=4096)

	Return asyncio task wrapping coroutine of reader.read(size).








            

          

      

      

    

  

    
      
          
            
  
client

Telnet Client API for the ‘telnetlib3’ python package.


	
class TelnetClient(term='unknown', cols=80, rows=25, tspeed=38400, 38400, xdisploc='', *args, **kwargs)

	Telnet client that supports all common options.

This class is useful for automation, it appears to be a virtual terminal to
the remote end, but does not require an interactive terminal to run.

Class initializer.


	
DEFAULT_LOCALE = 'en_US'

	On send_env(), the value of ‘LANG’ will be ‘C’ for binary
transmission.  When encoding is specified (utf8 by default), the LANG
variable must also contain a locale, this value is used, providing a
full default LANG value of ‘en_US.utf8’






	
connection_made(transport)

	Callback for connection made to server.






	
send_ttype()

	Callback for responding to TTYPE requests.






	
send_tspeed()

	Callback for responding to TSPEED requests.






	
send_xdisploc()

	Callback for responding to XDISPLOC requests.






	
send_env(keys)

	Callback for responding to NEW_ENVIRON requests.


	Parameters

	keys (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Values are requested for the keys specified.
When empty, all environment values that wish to be volunteered
should be returned.



	Returns

	dictionary of environment values requested, or an
empty string for keys not available. A return value must be
given for each key requested.



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]










	
send_charset(offered)

	Callback for responding to CHARSET requests.

Receives a list of character encodings offered by the server
as offered such as ('LATIN-1', 'UTF-8'), for which the
client may return a value agreed to use, or None to disagree to
any available offers.  Server offerings may be encodings or
codepages.

The default implementation selects any matching encoding that
python is capable of using, preferring any that matches
encoding if matched in the offered list.


	Parameters

	offered (list [https://docs.python.org/3/library/stdtypes.html#list]) – list of CHARSET options offered by server.



	Returns

	character encoding agreed to be used.



	Return type

	Union[str [https://docs.python.org/3/library/stdtypes.html#str], None [https://docs.python.org/3/library/constants.html#None]]










	
send_naws()

	Callback for responding to NAWS requests.


	Return type

	(int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int])



	Returns

	client window size as (rows, columns).










	
encoding(outgoing=None, incoming=None)

	Return encoding for the given stream direction.


	Parameters

	
	outgoing (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the return value is suitable for
encoding bytes for transmission to server.


	incoming (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the return value is suitable for
decoding bytes received by the client.






	Raises

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – when a direction argument, either outgoing
or incoming, was not set True.



	Returns

	'US-ASCII' for the directions indicated, unless
BINARY RFC 856 [https://tools.ietf.org/html/rfc856.html] has been negotiated for the direction
indicated or :attr`force_binary` is set True.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]














	
class TelnetTerminalClient(term='unknown', cols=80, rows=25, tspeed=38400, 38400, xdisploc='', *args, **kwargs)

	Telnet client for sessions with a network virtual terminal (NVT).

Class initializer.


	
send_naws()

	Callback replies to request for window size, NAWS RFC 1073 [https://tools.ietf.org/html/rfc1073.html].


	Return type

	(int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int])



	Returns

	window dimensions by lines and columns










	
send_env(keys)

	Callback replies to request for env values, NEW_ENVIRON RFC 1572 [https://tools.ietf.org/html/rfc1572.html].


	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]



	Returns

	super class value updated with window LINES and COLUMNS.














	
open_connection(host=None, port=23, *, client_factory=None, loop=None, family=0, flags=0, local_addr=None, log=None, encoding='utf8', encoding_errors='replace', force_binary=False, term='unknown', cols=80, rows=25, tspeed=38400, 38400, xdisploc='', shell=None, connect_minwait=2.0, connect_maxwait=3.0, waiter_closed=None, _waiter_connected=None, limit=None)

	Connect to a TCP Telnet server as a Telnet client.


	Parameters

	
	host (str [https://docs.python.org/3/library/stdtypes.html#str]) – Remote Internet TCP Server host.


	port (int [https://docs.python.org/3/library/functions.html#int]) – Remote Internet host TCP port.


	client_factory (client_base.BaseClient) – Client connection class
factory.  When None, TelnetTerminalClient is used when
stdin is attached to a terminal, TelnetClient otherwise.


	loop (asyncio.AbstractEventLoop [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.AbstractEventLoop]) – set the event loop to use.
The return value of asyncio.get_event_loop() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.get_event_loop] is used when unset.


	family (int [https://docs.python.org/3/library/functions.html#int]) – Same meaning as
asyncio.loop.create_connection() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.loop.create_connection].


	flags (int [https://docs.python.org/3/library/functions.html#int]) – Same meaning as
asyncio.loop.create_connection() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.loop.create_connection].


	local_addr (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Same meaning as
asyncio.loop.create_connection() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.loop.create_connection].


	log (logging.Logger [https://docs.python.org/3/library/logging.html#logging.Logger]) – target logger, if None is given, one is created
using the namespace 'telnetlib3.server'.


	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) – The default assumed encoding, or False to disable
unicode support.  This value is used for decoding bytes received by and
encoding bytes transmitted to the Server.  These values are preferred
in response to NEW_ENVIRON RFC 1572 [https://tools.ietf.org/html/rfc1572.html] as environment value LANG,
and by CHARSET RFC 2066 [https://tools.ietf.org/html/rfc2066.html] negotiation.

The server’s attached reader, writer streams accept and return
unicode, unless this value explicitly set False.  In that case, the
attached streams interfaces are bytes-only.




	term (str [https://docs.python.org/3/library/stdtypes.html#str]) – Terminal type sent for requests of TTYPE, RFC 930 [https://tools.ietf.org/html/rfc930.html] or as
Environment value TERM by NEW_ENVIRON negotiation, RFC 1672 [https://tools.ietf.org/html/rfc1672.html].


	cols (int [https://docs.python.org/3/library/functions.html#int]) – Client window dimension sent as Environment value COLUMNS
by NEW_ENVIRON negotiation, RFC 1672 [https://tools.ietf.org/html/rfc1672.html] or NAWS RFC 1073 [https://tools.ietf.org/html/rfc1073.html].


	rows (int [https://docs.python.org/3/library/functions.html#int]) – Client window dimension sent as Environment value LINES by
NEW_ENVIRON negotiation, RFC 1672 [https://tools.ietf.org/html/rfc1672.html] or NAWS RFC 1073 [https://tools.ietf.org/html/rfc1073.html].


	tspeed (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Tuple of client BPS line speed in form (rx, tx)
for receive and transmit, respectively.  Sent when requested by TSPEED,
RFC 1079 [https://tools.ietf.org/html/rfc1079.html].


	xdisploc (str [https://docs.python.org/3/library/stdtypes.html#str]) – String transmitted in response for request of
XDISPLOC, RFC 1086 [https://tools.ietf.org/html/rfc1086.html] by server (X11).


	shell (Callable) – A asyncio.coroutine() that is called after
negotiation completes, receiving arguments (reader, writer).
The reader is a TelnetReader instance, the writer is
a TelnetWriter instance.


	connect_minwait (float [https://docs.python.org/3/library/functions.html#float]) – The client allows any additional telnet
negotiations to be demanded by the server within this period of time
before launching the shell.  Servers should assert desired negotiation
on-connect and in response to 1 or 2 round trips.

A server that does not make any telnet demands, such as a TCP server
that is not a telnet server will delay the execution of shell for
exactly this amount of time.




	connect_maxwait (float [https://docs.python.org/3/library/functions.html#float]) – If the remote end is not complaint, or
otherwise confused by our demands and failing to reply to pending
negotiations, the shell continues anyway after the greater of this
value or connect_minwait elapsed.


	force_binary (bool [https://docs.python.org/3/library/functions.html#bool]) – When True, the encoding specified is used for
both directions even when failing BINARY negotiation, RFC 856 [https://tools.ietf.org/html/rfc856.html].
This parameter has no effect when encoding=False.


	encoding_errors (str [https://docs.python.org/3/library/stdtypes.html#str]) – Same meaning as codecs.Codec.encode() [https://docs.python.org/3/library/codecs.html#codecs.Codec.encode].


	connect_minwait – XXX


	connect_maxwait – If the remote end is not complaint, or
otherwise confused by our demands, the shell continues anyway after the
greater of this value has elapsed.  A client that is not answering
option negotiation will delay the start of the shell by this amount.


	limit (int [https://docs.python.org/3/library/functions.html#int]) – The buffer limit for reader stream.






	Return (reader, writer)

	The reader is a TelnetReader
instance, the writer is a TelnetWriter instance.





This function is a coroutine().








            

          

      

      

    

  

    
      
          
            
  
client_base

Module provides class BaseClient.


	
class BaseClient(shell=None, log=None, loop=None, encoding='utf8', encoding_errors='strict', force_binary=False, connect_minwait=1.0, connect_maxwait=4.0, limit=None, waiter_closed=None, _waiter_connected=None)

	Base Telnet Client Protocol.

Class initializer.


	
default_encoding

	encoding for new connections






	
connect_minwait

	minimum duration for check_negotiation().






	
connect_maxwait

	maximum duration for check_negotiation().






	
eof_received()

	Called when the other end calls write_eof() or equivalent.






	
connection_lost(exc)

	Called when the connection is lost or closed.


	Parameters

	exc (Exception [https://docs.python.org/3/library/exceptions.html#Exception]) – exception.  None indicates
a closing EOF sent by this end.










	
connection_made(transport)

	Called when a connection is made.

Ensure super().connection_made(transport) is called when derived.






	
data_received(data)

	Process bytes received by transport.






	
property duration

	Time elapsed since client connected, in seconds as float.






	
property idle

	Time elapsed since data last received, in seconds as float.






	
get_extra_info(name, default=None)

	Get optional client protocol or transport information.






	
begin_negotiation()

	Begin on-connect negotiation.

A Telnet client is expected to send only a minimal amount of client
session options immediately after connection, it is generally the
server which dictates server option support.

Deriving implementations should always call
super().begin_negotiation().






	
encoding(outgoing=False, incoming=False)

	Encoding that should be used for the direction indicated.

The base implementation always returns encoding argument
given to class initializer or, when unset (None), US-ASCII.






	
check_negotiation(final=False)

	Callback, return whether negotiation is complete.


	Parameters

	final (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether this is the final time this callback
will be requested to answer regarding protocol negotiation.



	Returns

	Whether negotiation is over (client end is satisfied).



	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]





Method is called on each new command byte processed until negotiation is
considered final, or after connect_maxwait has elapsed, setting
the _waiter_connected attribute to value self when complete.

This method returns False until connect_minwait has elapsed,
ensuring the server may batch telnet negotiation demands without
prematurely entering the callback shell.

Ensure super().check_negotiation() is called and conditionally
combined when derived.












            

          

      

      

    

  

    
      
          
            
  
client_shell


	
telnet_client_shell(telnet_reader, telnet_writer)

	Minimal telnet client shell for POSIX terminals.

This shell performs minimal tty mode handling when a terminal is
attached to standard in (keyboard), notably raw mode is often set
and this shell may exit only by disconnect from server, or the
escape character, ^].

stdin or stdout may also be a pipe or file, behaving much like nc(1).

This function is a coroutine().








            

          

      

      

    

  

    
      
          
            
  
server

The main function here is wired to the command line tool by name
telnetlib3-server.  If this server’s PID receives the SIGTERM signal, it
attempts to shutdown gracefully.

The TelnetServer class negotiates a character-at-a-time (WILL-SGA,
WILL-ECHO) session with support for negotiation about window size, environment
variables, terminal type name, and to automatically close connections clients
after an idle period.


	
class TelnetServer(term='unknown', cols=80, rows=25, timeout=300, *args, **kwargs)

	Telnet Server protocol performing common negotiation.

Class initializer.


	
TTYPE_LOOPMAX = 8

	Maximum number of cycles to seek for all terminal types.  We are seeking
the repeat or cycle of a terminal table, choosing the first – but when
negotiated by MUD clients, we chose the must Unix TERM appropriate,






	
connection_made(transport)

	Called when a connection is made.

Sets attributes _transport, _when_connected, _last_received,
reader and writer.

Ensure super().connection_made(transport) is called when derived.






	
data_received(data)

	Process bytes received by transport.






	
begin_negotiation()

	Begin on-connect negotiation.

A Telnet server is expected to demand preferred session options
immediately after connection.  Deriving implementations should always
call super().begin_negotiation().






	
begin_advanced_negotiation()

	Begin advanced negotiation.

Callback method further requests advanced telnet options.  Called
once on receipt of any DO or WILL acknowledgments
received, indicating that the remote end is capable of negotiating
further.

Only called if sub-classing begin_negotiation() causes
at least one negotiation option to be affirmatively acknowledged.






	
check_negotiation(final=False)

	Callback, return whether negotiation is complete.


	Parameters

	final (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether this is the final time this callback
will be requested to answer regarding protocol negotiation.



	Returns

	Whether negotiation is over (server end is satisfied).



	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]





Method is called on each new command byte processed until negotiation is
considered final, or after connect_maxwait has elapsed, setting
attribute _waiter_connected to value self when complete.

Ensure super().check_negotiation() is called and conditionally
combined when derived.






	
encoding(outgoing=None, incoming=None)

	Return encoding for the given stream direction.


	Parameters

	
	outgoing (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the return value is suitable for
encoding bytes for transmission to client end.


	incoming (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the return value is suitable for
decoding bytes received from the client.






	Raises

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – when a direction argument, either outgoing
or incoming, was not set True.



	Returns

	'US-ASCII' for the directions indicated, unless
BINARY RFC 856 [https://tools.ietf.org/html/rfc856.html] has been negotiated for the direction
indicated or :attr`force_binary` is set True.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
set_timeout(duration=- 1)

	Restart or unset timeout for client.


	Parameters

	duration (int [https://docs.python.org/3/library/functions.html#int]) – When specified as a positive integer,
schedules Future for callback of on_timeout().  When -1,
the value of self.get_extra_info('timeout') is used.  When
non-True, it is canceled.










	
on_timeout()

	Callback received on session timeout.

Default implementation writes “Timeout.” bound by CRLF and closes.

This can be disabled by calling set_timeout() with
duration value of 0 or value of
the same for keyword argument timeout.






	
on_naws(rows, cols)

	Callback receives NAWS response, RFC 1073 [https://tools.ietf.org/html/rfc1073.html].


	Parameters

	
	rows (int [https://docs.python.org/3/library/functions.html#int]) – screen size, by number of cells in height.


	cols (int [https://docs.python.org/3/library/functions.html#int]) – screen size, by number of cells in width.













	
on_request_environ()

	Definition for NEW_ENVIRON request of client, RFC 1572 [https://tools.ietf.org/html/rfc1572.html].

This method is a callback from request_environ(),
first entered on receipt of (WILL, NEW_ENVIRON) by server.  The return
value defines the request made to the client for environment values.


	Rtype list

	a list of unicode character strings of US-ASCII
characters, indicating the environment keys the server requests
of the client.  If this list contains the special byte constants,
USERVAR or VAR, the client is allowed to volunteer any
other additional user or system values.

Any empty return value indicates that no request should be made.





The default return value is:

['LANG', 'TERM', 'COLUMNS', 'LINES', 'DISPLAY', 'COLORTERM',
 VAR, USERVAR, 'COLORTERM']










	
on_environ(mapping)

	Callback receives NEW_ENVIRON response, RFC 1572 [https://tools.ietf.org/html/rfc1572.html].






	
on_request_charset()

	Definition for CHARSET request by client, RFC 2066 [https://tools.ietf.org/html/rfc2066.html].

This method is a callback from request_charset(),
first entered on receipt of (WILL, CHARSET) by server.  The return
value defines the request made to the client for encodings.


	Rtype list

	a list of unicode character strings of US-ASCII
characters, indicating the encodings offered by the server in
its preferred order.

Any empty return value indicates that no encodings are offered.





The default return value begins:

['UTF-8', 'UTF-16', 'LATIN1', 'US-ASCII', 'BIG5', 'GBK', ...]










	
on_charset(charset)

	Callback for CHARSET response, RFC 2066 [https://tools.ietf.org/html/rfc2066.html].






	
on_tspeed(rx, tx)

	Callback for TSPEED response, RFC 1079 [https://tools.ietf.org/html/rfc1079.html].






	
on_ttype(ttype)

	Callback for TTYPE response, RFC 930 [https://tools.ietf.org/html/rfc930.html].






	
on_xdisploc(xdisploc)

	Callback for XDISPLOC response, RFC 1096 [https://tools.ietf.org/html/rfc1096.html].










	
create_server(host=None, port=23, protocol_factory=<class 'telnetlib3.server.TelnetServer'>, **kwds)

	Create a TCP Telnet server.


	Parameters

	
	host (str [https://docs.python.org/3/library/stdtypes.html#str]) – The host parameter can be a string, in that case the TCP
server is bound to host and port. The host parameter can also be a
sequence of strings, and in that case the TCP server is bound to all
hosts of the sequence.


	port (int [https://docs.python.org/3/library/functions.html#int]) – listen port for TCP Server.


	protocol_factory (server_base.BaseServer) – An alternate protocol
factory for the server, when unspecified, TelnetServer is
used.


	shell (Callable) – A asyncio.coroutine() that is called after
negotiation completes, receiving arguments (reader, writer).
The reader is a TelnetReader instance, the writer is
a TelnetWriter instance.


	log (logging.Logger [https://docs.python.org/3/library/logging.html#logging.Logger]) – target logger, if None is given, one is created
using the namespace 'telnetlib3.server'.


	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) – The default assumed encoding, or False to disable
unicode support.  Encoding may be negotiation to another value by
the client through NEW_ENVIRON RFC 1572 [https://tools.ietf.org/html/rfc1572.html] by sending environment value
of LANG, or by any legal value for CHARSET RFC 2066 [https://tools.ietf.org/html/rfc2066.html] negotiation.

The server’s attached reader, writer streams accept and return
unicode, unless this value explicitly set False.  In that case, the
attached streams interfaces are bytes-only.




	encoding_errors (str [https://docs.python.org/3/library/stdtypes.html#str]) – Same meaning as codecs.Codec.encode() [https://docs.python.org/3/library/codecs.html#codecs.Codec.encode].
Default value is strict.


	force_binary (bool [https://docs.python.org/3/library/functions.html#bool]) – When True, the encoding specified is
used for both directions even when BINARY mode, RFC 856 [https://tools.ietf.org/html/rfc856.html], is not
negotiated for the direction specified.  This parameter has no effect
when encoding=False.


	term (str [https://docs.python.org/3/library/stdtypes.html#str]) – Value returned for writer.get_extra_info('term')
until negotiated by TTYPE RFC 930 [https://tools.ietf.org/html/rfc930.html], or NAWS RFC 1572 [https://tools.ietf.org/html/rfc1572.html].  Default value
is 'unknown'.


	cols (int [https://docs.python.org/3/library/functions.html#int]) – Value returned for writer.get_extra_info('cols')
until negotiated by NAWS RFC 1572 [https://tools.ietf.org/html/rfc1572.html]. Default value is 80 columns.


	rows (int [https://docs.python.org/3/library/functions.html#int]) – Value returned for writer.get_extra_info('rows')
until negotiated by NAWS RFC 1572 [https://tools.ietf.org/html/rfc1572.html]. Default value is 25 rows.


	timeout (int [https://docs.python.org/3/library/functions.html#int]) – Causes clients to disconnect if idle for this duration,
in seconds.  This ensures resources are freed on busy servers.  When
explicitly set to False, clients will not be disconnected for
timeout. Default value is 300 seconds (5 minutes).


	connect_maxwait (float [https://docs.python.org/3/library/functions.html#float]) – If the remote end is not complaint, or
otherwise confused by our demands, the shell continues anyway after the
greater of this value has elapsed.  A client that is not answering
option negotiation will delay the start of the shell by this amount.


	limit (int [https://docs.python.org/3/library/functions.html#int]) – The buffer limit for the reader stream.






	Return asyncio.Server

	The return value is the same as
asyncio.loop.create_server() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.loop.create_server], An object which can be used
to stop the service.





This function is a coroutine().






	
run_server(host='localhost', port=6023, loglevel='info', logfile=None, logfmt='%(asctime)s %(levelname)s %(filename)s:%(lineno)d %(message)s', shell=<function telnet_server_shell>, encoding='utf8', force_binary=False, timeout=300, connect_maxwait=4.0)

	Program entry point for server daemon.

This function configures a logger and creates a telnet server for the
given keyword arguments, serving forever, completing only upon receipt of
SIGTERM.








            

          

      

      

    

  

    
      
          
            
  
server_base

Module provides class BaseServer.


	
class BaseServer(shell=None, log=None, loop=None, _waiter_connected=None, _waiter_closed=None, encoding='utf8', encoding_errors='strict', force_binary=False, connect_maxwait=4.0, limit=None)

	Base Telnet Server Protocol.

Class initializer.


	
connect_maxwait

	maximum duration for check_negotiation().






	
eof_received()

	Called when the other end calls write_eof() or equivalent.

This callback may be exercised by the nc(1) client argument -z.






	
connection_lost(exc)

	Called when the connection is lost or closed.


	Parameters

	exc (Exception [https://docs.python.org/3/library/exceptions.html#Exception]) – exception.  None indicates close by EOF.










	
connection_made(transport)

	Called when a connection is made.

Sets attributes _transport, _when_connected, _last_received,
reader and writer.

Ensure super().connection_made(transport) is called when derived.






	
data_received(data)

	Process bytes received by transport.






	
property duration

	Time elapsed since client connected, in seconds as float.






	
property idle

	Time elapsed since data last received, in seconds as float.






	
get_extra_info(name, default=None)

	Get optional server protocol or transport information.






	
begin_negotiation()

	Begin on-connect negotiation.

A Telnet server is expected to demand preferred session options
immediately after connection.  Deriving implementations should always
call super().begin_negotiation().






	
begin_advanced_negotiation()

	Begin advanced negotiation.

Callback method further requests advanced telnet options.  Called
once on receipt of any DO or WILL acknowledgments
received, indicating that the remote end is capable of negotiating
further.

Only called if sub-classing begin_negotiation() causes
at least one negotiation option to be affirmatively acknowledged.






	
encoding(outgoing=False, incoming=False)

	Encoding that should be used for the direction indicated.

The base implementation always returns the encoding given to class
initializer, or, when unset (None), US-ASCII.






	
negotiation_should_advance()

	Whether advanced negotiation should commence.


	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]



	Returns

	True if advanced negotiation should be permitted.





The base implementation returns True if any negotiation options
were affirmatively acknowledged by client, more than likely
options requested in callback begin_negotiation().






	
check_negotiation(final=False)

	Callback, return whether negotiation is complete.


	Parameters

	final (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether this is the final time this callback
will be requested to answer regarding protocol negotiation.



	Returns

	Whether negotiation is over (server end is satisfied).



	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]





Method is called on each new command byte processed until negotiation is
considered final, or after connect_maxwait has elapsed, setting
attribute _waiter_connected to value self when complete.

Ensure super().check_negotiation() is called and conditionally
combined when derived.












            

          

      

      

    

  

    
      
          
            
  
server_shell


	
telnet_server_shell(reader, writer)

	A default telnet shell, appropriate for use with telnetlib3.create_server.

This shell provides a very simple REPL, allowing introspection and state
toggling of the connected client session.

This function is a coroutine().








            

          

      

      

    

  

    
      
          
            
  
slc

Special Line Character support for Telnet Linemode Option (RFC 1184 [https://tools.ietf.org/html/rfc1184.html]).


	
generate_slctab(tabset={b'\x01': <telnetlib3.slc.SLC object>, b'\x02': <telnetlib3.slc.SLC object>, b'\x03': <telnetlib3.slc.SLC object>, b'\x04': <telnetlib3.slc.SLC object>, b'\x05': <telnetlib3.slc.SLC object>, b'\x06': <telnetlib3.slc.SLC object>, b'\x07': <telnetlib3.slc.SLC object>, b'\x08': <telnetlib3.slc.SLC object>, b'\t': <telnetlib3.slc.SLC object>, b'\n': <telnetlib3.slc.SLC object>, b'\x0b': <telnetlib3.slc.SLC object>, b'\x0c': <telnetlib3.slc.SLC object>, b'\r': <telnetlib3.slc.SLC object>, b'\x0e': <telnetlib3.slc.SLC object>, b'\x0f': <telnetlib3.slc.SLC object>, b'\x10': <telnetlib3.slc.SLC object>, b'\x11': <telnetlib3.slc.SLC_nosupport object>, b'\x12': <telnetlib3.slc.SLC_nosupport object>})

	Returns full ‘SLC Tab’ for definitions found using tabset.
Functions not listed in tabset are set as SLC_NOSUPPORT.






	
class Linemode(mask=b'\x00')

	A mask of LMODE_MODE_LOCAL means that all line editing is
performed on the client side (default). A mask of theNULL ()
indicates that editing is performed on the remote side.
Valid bit flags of mask are: LMODE_MODE_TRAPSIG,
LMODE_MODE_ACK, LMODE_MODE_SOFT_TAB, and
LMODE_MODE_LIT_ECHO.


	
property local

	True if linemode is local.






	
property remote

	True if linemode is remote.






	
property trapsig

	True if signals are trapped by client.






	
property ack

	Returns True if mode has been acknowledged.






	
property soft_tab

	Returns True if client will expand horizontal tab (    ).






	
property lit_echo

	Returns True if non-printable characters are displayed as-is.










	
snoop(byte, slctab, slc_callbacks)

	Scan slctab for matching byte values.

Returns (callback, func_byte, slc_definition) on match.
Otherwise, (None, None, None). If no callback is assigned,
the value of callback is always None.






	
generate_forwardmask(binary_mode, tabset, ack=False)

	Generate a Forwardmask instance.

Generate a 32-byte (binary_mode is True) or 16-byte (False) Forwardmask
instance appropriate for the specified slctab.  A Forwardmask is formed
by a bitmask of all 256 possible 8-bit keyboard ascii input, or, when not
‘outbinary’, a 16-byte 7-bit representation of each value, and whether or
not they should be “forwarded” by the client on the transport stream






	
class Forwardmask(value, ack=False)

	Forwardmask object using the bytemask value received by server.


	Parameters

	value (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – bytemask value received by server after IAC SB
LINEMODE DO FORWARDMASK. It must be a bytearray of length 16 or 32.






	
description_table()

	Returns list of strings describing obj as a tabular ASCII map.










	
name_slc_command(byte)

	Given an SLC byte, return global mnemonic as string.








            

          

      

      

    

  

    
      
          
            
  
stream_reader

Module provides class TelnetReader and TelnetReaderUnicode.


	
class TelnetReader(limit=65536, loop=None)

	A reader interface for the telnet protocol.


	
readline()

	Read one line.

Where “line” is a sequence of characters ending with CR LF, LF,
or CR NUL. This readline function is a strict interpretation of
Telnet Protocol RFC 854 [https://tools.ietf.org/html/rfc854.html].


The sequence “CR LF” must be treated as a single “new line” character
and used whenever their combined action is intended; The sequence “CR
NUL” must be used where a carriage return alone is actually desired;
and the CR character must be avoided in other contexts.




And therefor, a line does not yield for a stream containing a
CR if it is not succeeded by NUL or LF.







	Given stream

	readline() yields





	--\r\x00---

	--\r, --- …



	--\r\n---

	--\r\n, --- …



	--\n---

	--\n, --- …



	--\r---

	--\r, --- …






If EOF is received before the termination of a line, the method will
yield the partially read string.

This method is a coroutine().










	
class TelnetReaderUnicode(fn_encoding, *, limit=65536, loop=None, encoding_errors='replace')

	A Unicode StreamReader interface for Telnet protocol.


	Parameters

	fn_encoding (Callable) – function callback, receiving boolean
keyword argument, incoming=True, which is used by the callback
to determine what encoding should be used to decode the value in
the direction specified.






	
decode(buf, final=False)

	Decode bytes buf using preferred encoding.






	
readline()

	Read one line.

See ancestor method, readline() for details.

This method is a coroutine().






	
read(n=- 1)

	Read up to n bytes.

If the EOF was received and the internal buffer is empty, return an
empty string.


	Parameters

	n (int [https://docs.python.org/3/library/functions.html#int]) – If n is not provided, or set to -1, read until EOF
and return all characters as one large string.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]





This method is a coroutine().






	
readexactly(n)

	Read exactly n unicode characters.


	Raises

	asyncio.IncompleteReadError [https://docs.python.org/3/library/asyncio-exceptions.html#asyncio.IncompleteReadError] – if the end of the stream is
reached before n can be read. the
asyncio.IncompleteReadError.partial [https://docs.python.org/3/library/asyncio-exceptions.html#asyncio.IncompleteReadError.partial] attribute of the
exception contains the partial read characters.



	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]





This method is a coroutine().












            

          

      

      

    

  

    
      
          
            
  
stream_writer

Module provides TelnetWriter and TelnetWriterUnicode.


	
class TelnetWriter(transport, protocol, *, client=False, server=False, reader=None, loop=None, log=None)

	A writer interface for the telnet protocol.

Telnet IAC Interpreter.

Almost all negotiation actions are performed through the writer
interface, as any action requires writing bytes to the underling
stream.  This class implements feed_byte(), which acts as a
Telnet Is-A-Command (IAC) interpreter.

The significance of the last byte passed to this method is tested
by instance attribute is_oob, following the call to
feed_byte() to determine whether the given byte is in or out
of band.

A minimal Telnet Protocol method,
asyncio.Protocol.data_received() [https://docs.python.org/3/library/asyncio-protocol.html#asyncio.Protocol.data_received], should forward each byte to
feed_byte(), which returns True to indicate the given byte should be
forwarded to a Protocol reader method.


	Parameters

	
	client (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the IAC interpreter should react from
the client point of view.


	server (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the IAC interpreter should react from
the server point of view.


	log (logging.Logger [https://docs.python.org/3/library/logging.html#logging.Logger]) – target logger, if None is given, one is
created using the namespace 'telnetlib3.stream_writer'.


	loop (asyncio.AbstractEventLoop [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.AbstractEventLoop]) – set the event loop to
use.  The return value of asyncio.get_event_loop() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.get_event_loop] is used
when unset.









	
byte_count = 0

	Total bytes sent to feed_byte()






	
lflow = True

	Whether flow control is enabled.






	
xon_any = False

	Whether flow control enabled by Transmit-Off (XOFF) (Ctrl-s), should
re-enable Transmit-On (XON) only on receipt of XON (Ctrl-q).  When
False, any keypress from client re-enables transmission.






	
iac_received = None

	Whether the last byte received by feed_byte() is the beginning
of an IAC command.






	
cmd_received = None

	Whether the last byte received by feed_byte() begins an IAC
command sequence.






	
slc_received = None

	Whether the last byte received by feed_byte() is a matching
special line character value, if negotiated.






	
slc_simulated = True

	SLC function values and callbacks are fired for clients in Kludge
mode not otherwise capable of negotiating LINEMODE, providing
transport remote editing function callbacks for dumb clients.






	
default_linemode = <b'\x10': lit_echo:True, soft_tab:False, ack:False, trapsig:False, remote:True, local:False>

	Initial line mode requested by server if client supports LINEMODE
negotiation (remote line editing and literal echo of control chars)






	
pending_option

	Dictionary of telnet option byte(s) that follow an
IAC-DO or IAC-DONT command, and contains a value of True
until IAC-WILL or IAC-WONT has been received by remote end.






	
local_option

	Dictionary of telnet option byte(s) that follow an
IAC-WILL or IAC-WONT command, sent by our end,
indicating state of local capabilities.






	
remote_option

	Dictionary of telnet option byte(s) that follow an
IAC-WILL or IAC-WONT command received by remote end,
indicating state of remote capabilities.






	
slctab

	SLC Tab (SLC Functions and their support level, and ascii value)






	
write(data)

	Write a bytes object to the protocol transport.


	Return type

	None [https://docs.python.org/3/library/constants.html#None]










	
writelines(lines)

	Write unicode strings to transport.

Note that newlines are not added.  The sequence can be any iterable
object producing strings. This is equivalent to calling write() for
each string.






	
feed_byte(byte)

	Feed a single byte into Telnet option state machine.


	Parameters

	byte (int [https://docs.python.org/3/library/functions.html#int]) – an 8-bit byte value as integer (0-255), or
a bytes array.  When a bytes array, it must be of length
1.



	Rtype bool

	Whether the given byte is “in band”, that is, should
be duplicated to a connected terminal or device.  False is
returned for an IAC command for each byte until its completion.










	
get_extra_info(name, default=None)

	Get optional server protocol information.






	
property protocol

	The protocol attached to this stream.






	
property server

	Whether this stream is of the server’s point of view.






	
property client

	Whether this stream is of the client’s point of view.






	
property inbinary

	Whether binary data is expected to be received on reader, RFC 856 [https://tools.ietf.org/html/rfc856.html].






	
property outbinary

	Whether binary data may be written to the writer, RFC 856 [https://tools.ietf.org/html/rfc856.html].






	
echo(data)

	Conditionally write data to transport when “remote echo” enabled.


	Parameters

	data (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – string received as input, conditionally written.



	Return type

	None [https://docs.python.org/3/library/constants.html#None]





The default implementation depends on telnet negotiation willingness
for local echo, only an RFC-compliant telnet client will correctly
set or unset echo accordingly by demand.






	
property will_echo

	Whether Server end is expected to echo back input sent by client.

From server perspective: the server should echo (duplicate) client
input back over the wire, the client is awaiting this data to indicate
their input has been received.

From client perspective: the server will not echo our input, we should
chose to duplicate our input to standard out ourselves.






	
property mode

	String describing NVT mode.


	Rtype str

	One of:


	kludge: Client acknowledges WILL-ECHO, WILL-SGA. character-at-
	a-time and remote line editing may be provided.



	local: Default NVT half-duplex mode, client performs line
	editing and transmits only after pressing send (usually CR)



	remote: Client supports advanced remote line editing, using
	mixed-mode local line buffering (optionally, echoing) until
send, but also transmits buffer up to and including special
line characters (SLCs).














	
property is_oob

	The previous byte should not be received by the API stream.






	
property linemode

	Linemode instance for stream.


Note

value is meaningful after successful LINEMODE negotiation,
otherwise does not represent the linemode state of the stream.



Attributes of the stream’s active linemode may be tested using boolean
instance attributes, edit, trapsig, soft_tab, lit_echo,
remote, local.






	
send_iac(buf)

	Send a command starting with IAC (base 10 byte value 255).

No transformations of bytes are performed.  Normally, if the
byte value 255 is sent, it is escaped as IAC + IAC.  This
method ensures it is not escaped,.






	
iac(cmd, opt=b'')

	Send Is-A-Command 3-byte negotiation command.

Returns True if command was sent. Not all commands are legal in the
context of client, server, or pending negotiation state, emitting a
relevant debug warning to the log handler if not sent.






	
send_ga()

	Transmit IAC GA (Go-Ahead).

Returns True if sent.  If IAC-DO-SGA has been received, then
False is returned and IAC-GA is not transmitted.






	
send_eor()

	Transmit IAC CMD_EOR (End-of-Record), RFC 885 [https://tools.ietf.org/html/rfc885.html].

Returns True if sent. If IAC-DO-EOR has not been received,
False is returned and IAC-CMD_EOR is not transmitted.






	
request_status()

	Send IAC-SB-STATUS-SEND sub-negotiation (RFC 859 [https://tools.ietf.org/html/rfc859.html]).

This method may only be called after IAC-WILL-STATUS has been
received. Returns True if status request was sent.






	
request_tspeed()

	Send IAC-SB-TSPEED-SEND sub-negotiation, RFC 1079 [https://tools.ietf.org/html/rfc1079.html].

This method may only be called after IAC-WILL-TSPEED has been
received. Returns True if TSPEED request was sent.






	
request_charset()

	Request sub-negotiation CHARSET, RFC 2066 [https://tools.ietf.org/html/rfc2066.html].

Returns True if request is valid for telnet state, and was sent.

The sender requests that all text sent to and by it be encoded in
one of character sets specified by string list codepages, which
is determined by function value returned by callback registered using
set_ext_send_callback() with value CHARSET.






	
request_environ()

	Request sub-negotiation NEW_ENVIRON, RFC 1572 [https://tools.ietf.org/html/rfc1572.html].

Returns True if request is valid for telnet state, and was sent.






	
request_xdisploc()

	Send XDISPLOC, SEND sub-negotiation, RFC 1086 [https://tools.ietf.org/html/rfc1086.html].

Returns True if request is valid for telnet state, and was sent.






	
request_ttype()

	Send TTYPE SEND sub-negotiation, RFC 930 [https://tools.ietf.org/html/rfc930.html].

Returns True if request is valid for telnet state, and was sent.






	
request_forwardmask(fmask=None)

	Request the client forward their terminal control characters.

Characters are indicated in the Forwardmask instance
fmask.  When fmask is None, a forwardmask is generated for the SLC
characters registered by slctab.






	
send_lineflow_mode()

	Send LFLOW mode sub-negotiation, RFC 1372 [https://tools.ietf.org/html/rfc1372.html].

Returns True if request is valid for telnet state, and was sent.






	
send_linemode(linemode=None)

	Set and Inform other end to agree to change to linemode, linemode.

An instance of the Linemode class, or self.linemode when unset.






	
set_iac_callback(cmd, func)

	Register callable func as callback for IAC cmd.

BRK, IP, AO, AYT, EC, EL, CMD_EOR, EOF, SUSP, ABORT, and NOP.

These callbacks receive a single argument, the IAC cmd which
triggered it.






	
handle_nop(cmd)

	Handle IAC No-Operation (NOP).






	
handle_ga(cmd)

	Handle IAC Go-Ahead (GA).






	
handle_dm(cmd)

	Handle IAC Data-Mark (DM).






	
handle_el(byte)

	Handle IAC Erase Line (EL, SLC_EL).

Provides a function which discards all the data ready on current
line of input. The prompt should be re-displayed.






	
handle_eor(byte)

	Handle IAC End of Record (CMD_EOR, SLC_EOR).






	
handle_abort(byte)

	Handle IAC Abort (ABORT, SLC_ABORT).

Similar to Interrupt Process (IP), but means only to abort or
terminate the process to which the NVT is connected.






	
handle_eof(byte)

	Handle IAC End of Record (EOF, SLC_EOF).






	
handle_susp(byte)

	Handle IAC Suspend Process (SUSP, SLC_SUSP).

Suspends the execution of the current process attached to the NVT
in such a way that another process will take over control of the
NVT, and the suspended process can be resumed at a later time.

If the receiving system does not support this functionality, it
should be ignored.






	
handle_brk(byte)

	Handle IAC Break (BRK, SLC_BRK).

Sent by clients to indicate BREAK keypress. This is not the same
as IP (^c), but a means to map sysystem-dependent break key such
as found on an IBM Systems.






	
handle_ayt(byte)

	Handle IAC Are You There (AYT, SLC_AYT).

Provides the user with some visible (e.g., printable) evidence
that the system is still up and running.






	
handle_ip(byte)

	Handle IAC Interrupt Process (IP, SLC_IP).






	
handle_ao(byte)

	Handle IAC Abort Output (AO) or SLC_AO.

Discards any remaining output on the transport buffer.


[…] a reasonable implementation would be to suppress the
remainder of the text string, but transmit the prompt character
and the preceding <CR><LF>.









	
handle_ec(byte)

	Handle IAC Erase Character (EC, SLC_EC).

Provides a function which deletes the last preceding undeleted
character from data ready on current line of input.






	
handle_tm(cmd)

	Handle IAC (WILL, WONT, DO, DONT) Timing Mark (TM).

TM is essentially a NOP that any IAC interpreter must answer, if at
least it answers WONT to unknown options (required), it may still
be used as a means to accurately measure the “ping” time.






	
set_slc_callback(slc_byte, func)

	Register func as callable for receipt of slc_byte.


	Parameters

	
	slc_byte (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – any of SLC_SYNCH, SLC_BRK, SLC_IP, SLC_AO,
SLC_AYT, SLC_EOR, SLC_ABORT, SLC_EOF, SLC_SUSP, SLC_EC, SLC_EL,
SLC_EW, SLC_RP, SLC_XON, SLC_XOFF …


	func (Callable) – These callbacks receive a single argument: the
SLC function byte that fired it. Some SLC and IAC functions are
intermixed; which signaling mechanism used by client can be tested
by evaluating this argument.













	
handle_ew(slc)

	Handle SLC_EW (Erase Word).

Provides a function which deletes the last preceding undeleted
character, and any subsequent bytes until next whitespace character
from data ready on current line of input.






	
handle_rp(slc)

	Handle SLC Repaint (RP).






	
handle_lnext(slc)

	Handle SLC Literal Next (LNEXT) (Next character is received raw).






	
handle_xon(byte)

	Handle SLC Transmit-On (XON).






	
handle_xoff(byte)

	Handle SLC Transmit-Off (XOFF).






	
set_ext_send_callback(cmd, func)

	Register callback for inquires of sub-negotiation of cmd.


	Parameters

	
	func (Callable) – A callable function for the given cmd byte.
Note that the return type must match those documented.


	cmd (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – These callbacks must return any number of arguments,
for each registered cmd byte, respectively:


	SNDLOC: for clients, returning one argument: the string
describing client location, such as b'ROOM 641-A',
RFC 779 [https://tools.ietf.org/html/rfc779.html].


	NAWS: for clients, returning two integer arguments (width,
height), such as (80, 24), RFC 1073 [https://tools.ietf.org/html/rfc1073.html].


	TSPEED: for clients, returning two integer arguments (rx, tx)
such as (57600, 57600), RFC 1079 [https://tools.ietf.org/html/rfc1079.html].


	TTYPE: for clients, returning one string, usually the terminfo(5)
database capability name, such as ‘xterm’, RFC 1091 [https://tools.ietf.org/html/rfc1091.html].


	XDISPLOC: for clients, returning one string, the DISPLAY host
value, in form of <host>:<dispnum>[.<screennum>], RFC 1096 [https://tools.ietf.org/html/rfc1096.html].


	NEW_ENVIRON: for clients, returning a dictionary of (key, val)
pairs of environment item values, RFC 1408 [https://tools.ietf.org/html/rfc1408.html].


	CHARSET: for clients, receiving iterable of strings of character
sets requested by server, callback must return one of those
strings given, RFC 2066 [https://tools.ietf.org/html/rfc2066.html].


















	
set_ext_callback(cmd, func)

	Register func as callback for receipt of cmd negotiation.


	Parameters

	cmd (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – One of the following listed bytes:






	LOGOUT: for servers and clients, receiving one argument.
Server end may receive DO or DONT as argument cmd, indicating
client’s wish to disconnect, or a response to WILL, LOGOUT,
indicating it’s wish not to be automatically disconnected.  Client
end may receive WILL or WONT, indicating server’s wish to disconnect,
or acknowledgment that the client will not be disconnected.


	SNDLOC: for servers, receiving one argument: the string
describing the client location, such as 'ROOM 641-A', RFC 779 [https://tools.ietf.org/html/rfc779.html].


	NAWS: for servers, receiving two integer arguments (width,
height), such as (80, 24), RFC 1073 [https://tools.ietf.org/html/rfc1073.html].


	TSPEED: for servers, receiving two integer arguments (rx, tx)
such as (57600, 57600), RFC 1079 [https://tools.ietf.org/html/rfc1079.html].


	TTYPE: for servers, receiving one string, usually the
terminfo(5) database capability name, such as ‘xterm’, RFC 1091 [https://tools.ietf.org/html/rfc1091.html].


	XDISPLOC: for servers, receiving one string, the DISPLAY
host value, in form of <host>:<dispnum>[.<screennum>],
RFC 1096 [https://tools.ietf.org/html/rfc1096.html].


	NEW_ENVIRON: for servers, receiving a dictionary of
(key, val) pairs of remote client environment item values,
RFC 1408 [https://tools.ietf.org/html/rfc1408.html].


	CHARSET: for servers, receiving one string, the character set
negotiated by client. RFC 2066 [https://tools.ietf.org/html/rfc2066.html].









	
handle_xdisploc(xdisploc)

	Receive XDISPLAY value xdisploc, RFC 1096 [https://tools.ietf.org/html/rfc1096.html].






	
handle_send_xdisploc()

	Send XDISPLAY value xdisploc, RFC 1096 [https://tools.ietf.org/html/rfc1096.html].






	
handle_sndloc(location)

	Receive LOCATION value location, RFC 779 [https://tools.ietf.org/html/rfc779.html].






	
handle_send_sndloc()

	Send LOCATION value location, RFC 779 [https://tools.ietf.org/html/rfc779.html].






	
handle_ttype(ttype)

	Receive TTYPE value ttype, RFC 1091 [https://tools.ietf.org/html/rfc1091.html].

A string value that represents client’s emulation capability.

Some example values: VT220, VT100, ANSITERM, ANSI, TTY, and 5250.






	
handle_send_ttype()

	Send TTYPE value ttype, RFC 1091 [https://tools.ietf.org/html/rfc1091.html].






	
handle_naws(width, height)

	Receive window size width and height, RFC 1073 [https://tools.ietf.org/html/rfc1073.html].






	
handle_send_naws()

	Send window size width and height, RFC 1073 [https://tools.ietf.org/html/rfc1073.html].






	
handle_environ(env)

	Receive environment variables as dict, RFC 1572 [https://tools.ietf.org/html/rfc1572.html].






	
handle_send_client_environ(keys)

	Send environment variables as dict, RFC 1572 [https://tools.ietf.org/html/rfc1572.html].

If argument keys is empty, then all available values should be
sent. Otherwise, keys is a set of environment keys explicitly
requested.






	
handle_send_server_environ()

	Server requests environment variables as list, RFC 1572 [https://tools.ietf.org/html/rfc1572.html].






	
handle_tspeed(rx, tx)

	Receive terminal speed from TSPEED as int, RFC 1079 [https://tools.ietf.org/html/rfc1079.html].






	
handle_send_tspeed()

	Send terminal speed from TSPEED as int, RFC 1079 [https://tools.ietf.org/html/rfc1079.html].






	
handle_charset(charset)

	Receive character set as string, RFC 2066 [https://tools.ietf.org/html/rfc2066.html].






	
handle_send_client_charset(charsets)

	Send character set selection as string, RFC 2066 [https://tools.ietf.org/html/rfc2066.html].

Given the available encodings presented by the server, select and
return only one.  Returning an empty string indicates that no
selection is made (request is ignored).






	
handle_send_server_charset(charsets)

	Send character set (encodings) offered to client, RFC 2066 [https://tools.ietf.org/html/rfc2066.html].






	
handle_logout(cmd)

	Handle (IAC, (DO | DONT | WILL | WONT), LOGOUT), RFC 727 [https://tools.ietf.org/html/rfc727.html].

Only the server end may receive (DO, DONT).
Only the client end may receive (WILL, WONT).






	
handle_do(opt)

	Process byte 3 of series (IAC, DO, opt) received by remote end.

This method can be derived to change or extend protocol capabilities,
for most cases, simply returning True if supported, False otherwise.

In special cases of various RFC statutes, state is stored and
answered in willing affirmative, with the exception of:


	DO TM is always answered WILL TM, even if it was already
replied to.  No state is stored (“Timing Mark”), and the IAC
callback registered by set_ext_callback() for cmd TM
is called with argument byte DO.


	DO LOGOUT executes extended callback registered by cmd LOGOUT
with argument DO (indicating a request for voluntary logoff).


	DO STATUS sends state of all local, remote, and pending options.









	
handle_dont(opt)

	Process byte 3 of series (IAC, DONT, opt) received by remote end.

This only results in self.local_option[opt] set to False, with
the exception of (IAC, DONT, LOGOUT), which only signals a callback
to handle_logout(DONT).






	
handle_will(opt)

	Process byte 3 of series (IAC, DONT, opt) received by remote end.

The remote end requests we perform any number of capabilities. Most
implementations require an answer in the affirmative with DO, unless
DO has meaning specific for only client or server end, and
dissenting with DONT.

WILL ECHO may only be received for clients, answered with DO.
WILL NAWS may only be received for servers, answered with DO.
BINARY and SGA are answered with DO.  STATUS, NEW_ENVIRON, XDISPLOC,
and TTYPE is answered with sub-negotiation SEND. The env variables
requested in response to WILL NEW_ENVIRON is “SEND ANY”.
All others are replied with DONT.

The result of a supported capability is a response of (IAC, DO, opt)
and the setting of self.remote_option[opt] of True. For
unsupported capabilities, RFC specifies a response of (IAC, DONT, opt).
Similarly, set self.remote_option[opt] to False.






	
handle_wont(opt)

	Process byte 3 of series (IAC, WONT, opt) received by remote end.

(IAC, WONT, opt) is a negative acknowledgment of (IAC, DO, opt) sent.

The remote end requests we do not perform a telnet capability.

It is not possible to decline a WONT. T.remote_option[opt] is set
False to indicate the remote end’s refusal to perform opt.






	
handle_subnegotiation(buf)

	Callback for end of sub-negotiation buffer.


SB options handled here are TTYPE, XDISPLOC, NEW_ENVIRON,
NAWS, and STATUS, and are delegated to their handle_
equivalent methods. Implementors of additional SB options
should extend this method.













	
class TelnetWriterUnicode(transport, protocol, fn_encoding, *, encoding_errors='strict', **kwds)

	A Unicode StreamWriter interface for Telnet protocol.

See ancestor class, TelnetWriter for details.

Requires the fn_encoding callback, receiving mutually boolean keyword
argument outgoing=True to determine what encoding should be used to
decode the value in the direction specified.

The encoding may be conditionally negotiated by CHARSET, RFC 2066 [https://tools.ietf.org/html/rfc2066.html], or
discovered by LANG environment variables by NEW_ENVIRON, RFC 1572 [https://tools.ietf.org/html/rfc1572.html].

A writer interface for the telnet protocol.

Telnet IAC Interpreter.

Almost all negotiation actions are performed through the writer
interface, as any action requires writing bytes to the underling
stream.  This class implements feed_byte(), which acts as a
Telnet Is-A-Command (IAC) interpreter.

The significance of the last byte passed to this method is tested
by instance attribute is_oob, following the call to
feed_byte() to determine whether the given byte is in or out
of band.

A minimal Telnet Protocol method,
asyncio.Protocol.data_received() [https://docs.python.org/3/library/asyncio-protocol.html#asyncio.Protocol.data_received], should forward each byte to
feed_byte(), which returns True to indicate the given byte should be
forwarded to a Protocol reader method.


	Parameters

	
	client (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the IAC interpreter should react from
the client point of view.


	server (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the IAC interpreter should react from
the server point of view.


	log (logging.Logger [https://docs.python.org/3/library/logging.html#logging.Logger]) – target logger, if None is given, one is
created using the namespace 'telnetlib3.stream_writer'.


	loop (asyncio.AbstractEventLoop [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.AbstractEventLoop]) – set the event loop to
use.  The return value of asyncio.get_event_loop() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.get_event_loop] is used
when unset.









	
encode(string, errors)

	Encode string using protocol-preferred encoding.


	Parameters

	
	errors (str [https://docs.python.org/3/library/stdtypes.html#str]) – same as meaning in codecs.Codec.encode() [https://docs.python.org/3/library/codecs.html#codecs.Codec.encode].  When None,
value of encoding_errors given to class initializer is used.


	errors – same as meaning in codecs.Codec.encode() [https://docs.python.org/3/library/codecs.html#codecs.Codec.encode], when
None (default), value of class initializer keyword argument,
encoding_errors.













	
write(string, errors=None)

	Write unicode string to transport, using protocol-preferred encoding.


	Parameters

	
	string (str [https://docs.python.org/3/library/stdtypes.html#str]) – unicode string text to write to endpoint using the
protocol’s preferred encoding.  When the protocol encoding
keyword is explicitly set to False, the given string should be
only raw b'bytes'.


	errors (str [https://docs.python.org/3/library/stdtypes.html#str]) – same as meaning in codecs.Codec.encode() [https://docs.python.org/3/library/codecs.html#codecs.Codec.encode], when
None (default), value of class initializer keyword argument,
encoding_errors.






	Return type

	None [https://docs.python.org/3/library/constants.html#None]










	
writelines(lines, errors=None)

	Write unicode strings to transport.

Note that newlines are not added.  The sequence can be any iterable
object producing strings. This is equivalent to calling write() for
each string.






	
echo(string, errors=None)

	Conditionally write string to transport when “remote echo” enabled.


	Parameters

	
	string (str [https://docs.python.org/3/library/stdtypes.html#str]) – string received as input, conditionally written.


	errors (str [https://docs.python.org/3/library/stdtypes.html#str]) – same as meaning in codecs.Codec.encode() [https://docs.python.org/3/library/codecs.html#codecs.Codec.encode].








This method may only be called from the server perspective.  The
default implementation depends on telnet negotiation willingness for
local echo: only an RFC-compliant telnet client will correctly set or
unset echo accordingly by demand.












            

          

      

      

    

  

    
      
          
            
  
telopt


	
name_command(byte)

	Return string description for (maybe) telnet command byte.






	
name_commands(cmds, sep=' ')

	Return string description for array of (maybe) telnet command bytes.








            

          

      

      

    

  

    
      
          
            
  
RFCs


Implemented


	RFC 727 [https://tools.ietf.org/html/rfc727.html], “Telnet Logout Option,” Apr 1977.


	RFC 779 [https://tools.ietf.org/html/rfc779.html], “Telnet Send-Location Option”, Apr 1981.


	RFC 854 [https://tools.ietf.org/html/rfc854.html], “Telnet Protocol Specification”, May 1983.


	RFC 855 [https://tools.ietf.org/html/rfc855.html], “Telnet Option Specifications”, May 1983.


	RFC 856 [https://tools.ietf.org/html/rfc856.html], “Telnet Binary Transmission”, May 1983.


	RFC 857 [https://tools.ietf.org/html/rfc857.html], “Telnet Echo Option”, May 1983.


	RFC 858 [https://tools.ietf.org/html/rfc858.html], “Telnet Suppress Go Ahead Option”, May 1983.


	RFC 859 [https://tools.ietf.org/html/rfc859.html], “Telnet Status Option”, May 1983.


	RFC 860 [https://tools.ietf.org/html/rfc860.html], “Telnet Timing mark Option”, May 1983.


	RFC 885 [https://tools.ietf.org/html/rfc885.html], “Telnet End of Record Option”, Dec 1983.


	RFC 1073 [https://tools.ietf.org/html/rfc1073.html], “Telnet Window Size Option”, Oct 1988.


	RFC 1079 [https://tools.ietf.org/html/rfc1079.html], “Telnet Terminal Speed Option”, Dec 1988.


	RFC 1091 [https://tools.ietf.org/html/rfc1091.html], “Telnet Terminal-Type Option”, Feb 1989.


	RFC 1096 [https://tools.ietf.org/html/rfc1096.html], “Telnet X Display Location Option”, Mar 1989.


	RFC 1123 [https://tools.ietf.org/html/rfc1123.html], “Requirements for Internet Hosts”, Oct 1989.


	RFC 1184 [https://tools.ietf.org/html/rfc1184.html], “Telnet Linemode Option (extended options)”, Oct 1990.


	RFC 1372 [https://tools.ietf.org/html/rfc1372.html], “Telnet Remote Flow Control Option”, Oct 1992.


	RFC 1408 [https://tools.ietf.org/html/rfc1408.html], “Telnet Environment Option”, Jan 1993.


	RFC 1571 [https://tools.ietf.org/html/rfc1571.html], “Telnet Environment Option Interoperability Issues”, Jan 1994.


	RFC 1572 [https://tools.ietf.org/html/rfc1572.html], “Telnet Environment Option”, Jan 1994.


	RFC 2066 [https://tools.ietf.org/html/rfc2066.html], “Telnet Charset Option”, Jan 1997.






Not Implemented


	RFC 861 [https://tools.ietf.org/html/rfc861.html], “Telnet Extended Options List”, May 1983. describes a method of
negotiating options after all possible 255 option bytes are exhausted by
future implementations. This never happened (about 100 remain), it was
perhaps, ambitious in thinking more protocols would incorporate Telnet (such
as FTP did).


	RFC 927 [https://tools.ietf.org/html/rfc927.html], “TACACS [https://en.wikipedia.org/wiki/TACACS] User Identification Telnet Option”, describes a method
of identifying terminal clients by a 32-bit UUID, providing a form of
‘rlogin’.  This system, published in 1984, was designed for MILNET [https://en.wikipedia.org/wiki/MILNET] by BBN [https://en.wikipedia.org/wiki/BBN_Technologies],
and the actual TACACS [https://en.wikipedia.org/wiki/TACACS] implementation is undocumented, though partially
re-imagined by Cisco in RFC 1492 [https://tools.ietf.org/html/rfc1492.html]. Essentially, the user’s credentials are
forwarded to a TACACS [https://en.wikipedia.org/wiki/TACACS] daemon to verify that the client does in fact have
access. The UUID is a form of an early Kerberos [https://en.wikipedia.org/wiki/Kerberos_%28protocol%29] token.


	RFC 933 [https://tools.ietf.org/html/rfc933.html], “Output Marking Telnet Option”, describes a method of sending
banners, such as displayed on login, with an associated ID to be stored by
the client. The server may then indicate at which time during the session
the banner is relevant. This was implemented by Mitre [https://mitre.org] for DOD installations
that might, for example, display various levels of “TOP SECRET” messages
each time a record is opened – preferably on the top, bottom, left or right
of the screen.


	RFC 946 [https://tools.ietf.org/html/rfc946.html], “Telnet Terminal Location Number Option”, only known to be
implemented at Carnegie Mellon University in the mid-1980’s, this was a
mechanism to identify a Terminal by ID, which would then be read and
forwarded by gatewaying hosts. So that user traveling from host A -> B -> C
appears as though his “from” address is host A in the system “who” and
“finger” services.  There exists more appropriate solutions, such as the
“Report Terminal ID” sequences CSI + c and CSI + 0c for vt102, and
ESC + z (vt52), which sends a terminal ID in-band as ASCII.


	RFC 1041 [https://tools.ietf.org/html/rfc1041.html], “Telnet 3270 Regime Option”, Jan 1988


	RFC 1043 [https://tools.ietf.org/html/rfc1043.html], “Telnet Data Entry Terminal Option”, Feb 1988


	RFC 1097 [https://tools.ietf.org/html/rfc1097.html], “Telnet Subliminal-Message Option”, Apr 1989


	RFC 1143 [https://tools.ietf.org/html/rfc1143.html], “The Q Method of Implementing .. Option Negotiation”, Feb 1990


	RFC 1205 [https://tools.ietf.org/html/rfc1205.html], “5250 Telnet Interface”, Feb 1991


	RFC 1411 [https://tools.ietf.org/html/rfc1411.html], “Telnet Authentication: Kerberos [https://en.wikipedia.org/wiki/Kerberos_%28protocol%29] Version 4”, Jan 1993


	RFC 1412 [https://tools.ietf.org/html/rfc1412.html], “Telnet Authentication: SPX”


	RFC 1416 [https://tools.ietf.org/html/rfc1416.html], “Telnet Authentication Option”


	RFC 2217 [https://tools.ietf.org/html/rfc2217.html], “Telnet Com Port Control Option”, Oct 1997






Additional Resources

These RFCs predate, or are superseded by, RFC 854 [https://tools.ietf.org/html/rfc854.html], but may be relevant for
study of the telnet protocol.


	RFC 97 [https://tools.ietf.org/html/rfc97.html] A First Cut at a Proposed Telnet Protocol


	RFC 137 [https://tools.ietf.org/html/rfc137.html] Telnet Protocol.


	RFC 139 [https://tools.ietf.org/html/rfc139.html] Discussion of Telnet Protocol.


	RFC 318 [https://tools.ietf.org/html/rfc318.html] Telnet Protocol.


	RFC 328 [https://tools.ietf.org/html/rfc328.html] Suggested Telnet Protocol Changes.


	RFC 340 [https://tools.ietf.org/html/rfc340.html] Proposed Telnet Changes.


	RFC 393 [https://tools.ietf.org/html/rfc393.html] Comments on TELNET Protocol Changes.


	RFC 435 [https://tools.ietf.org/html/rfc435.html] Telnet Issues.


	RFC 513 [https://tools.ietf.org/html/rfc513.html] Comments on the new Telnet Specifications.


	RFC 529 [https://tools.ietf.org/html/rfc529.html] A Note on Protocol Synch Sequences.


	RFC 559 [https://tools.ietf.org/html/rfc559.html] Comments on the new Telnet Protocol and its Implementation.


	RFC 563 [https://tools.ietf.org/html/rfc563.html] Comments on the RCTE Telnet Option.


	RFC 593 [https://tools.ietf.org/html/rfc593.html] Telnet and FTP Implementation Schedule Change.


	RFC 595 [https://tools.ietf.org/html/rfc595.html] Some Thoughts in Defense of the Telnet Go-Ahead.


	RFC 596 [https://tools.ietf.org/html/rfc596.html] Second Thoughts on Telnet Go-Ahead.


	RFC 652 [https://tools.ietf.org/html/rfc652.html] Telnet Output Carriage-Return Disposition Option.


	RFC 653 [https://tools.ietf.org/html/rfc653.html] Telnet Output Horizontal Tabstops Option.


	RFC 654 [https://tools.ietf.org/html/rfc654.html] Telnet Output Horizontal Tab Disposition Option.


	RFC 655 [https://tools.ietf.org/html/rfc655.html] Telnet Output Formfeed Disposition Option.


	RFC 656 [https://tools.ietf.org/html/rfc656.html] Telnet Output Vertical Tabstops Option.


	RFC 657 [https://tools.ietf.org/html/rfc657.html] Telnet Output Vertical Tab Disposition Option.


	RFC 658 [https://tools.ietf.org/html/rfc658.html] Telnet Output Linefeed Disposition.


	RFC 659 [https://tools.ietf.org/html/rfc659.html] Announcing Additional Telnet Options.


	RFC 698 [https://tools.ietf.org/html/rfc698.html] Telnet Extended ASCII Option.


	RFC 701 [https://tools.ietf.org/html/rfc701.html] August, 1974, Survey of New-Protocol Telnet Servers.


	RFC 702 [https://tools.ietf.org/html/rfc702.html] September, 1974, Survey of New-Protocol Telnet Servers.


	RFC 703 [https://tools.ietf.org/html/rfc703.html] July, 1975, Survey of New-Protocol Telnet Servers.


	RFC 718 [https://tools.ietf.org/html/rfc718.html] Comments on RCTE from the TENEX Implementation Experience.


	RFC 719 [https://tools.ietf.org/html/rfc719.html] Discussion on RCTE.


	RFC 726 [https://tools.ietf.org/html/rfc726.html] Remote Controlled Transmission and Echoing Telnet Option.


	RFC 728 [https://tools.ietf.org/html/rfc728.html] A Minor Pitfall in the Telnet Protocol.


	RFC 732 [https://tools.ietf.org/html/rfc732.html] Telnet Data Entry Terminal Option (Obsoletes: RFC 731 [https://tools.ietf.org/html/rfc731.html])


	RFC 734 [https://tools.ietf.org/html/rfc734.html] SUPDUP Protocol.


	RFC 735 [https://tools.ietf.org/html/rfc735.html] Revised Telnet Byte Macro Option (Obsoletes: RFC 729 [https://tools.ietf.org/html/rfc729.html],
RFC 736 [https://tools.ietf.org/html/rfc736.html])


	RFC 749 [https://tools.ietf.org/html/rfc749.html] Telnet SUPDUP-Output Option.


	RFC 818 [https://tools.ietf.org/html/rfc818.html] The Remote User Telnet Service.




The following further describe the telnet protocol and various extensions of
related interest:


	“Telnet Protocol,” MIL-STD-1782 [http://www.everyspec.com/MIL-STD/MIL-STD-1700-1799/MIL-STD-1782_6678/], U.S. Department of Defense, May 1984.


	“Mud Terminal Type Standard,” http://tintin.sourceforge.net/mtts/


	“Mud Client Protocol, Version 2.1,” http://www.moo.mud.org/mcp/mcp2.html


	“Telnet Protocol in C-Kermit 8.0 and Kermit 95 2.0,” http://www.columbia.edu/kermit/telnet80.html


	“Telnet Negotiation Concepts,” http://lpc.psyc.eu/doc/concepts/negotiation


	“Telnet RFCs,” http://www.omnifarious.org/~hopper/telnet-rfc.html”


	“Telnet Options”, http://www.iana.org/assignments/telnet-options/telnet-options.xml








            

          

      

      

    

  

    
      
          
            
  
Contributing

We welcome contributions via GitHub pull requests:


	Fork a Repo [https://help.github.com/articles/fork-a-repo/]


	Creating a pull request [https://help.github.com/articles/creating-a-pull-request/]





Developing

Prepare a developer environment.  Then, from the telnetlib3 code folder:

pip install --editable .





Any changes made in this project folder are then made available to the python
interpreter as the ‘telnetlib3’ module irregardless of the current working
directory.



Running Tests

Install and run tox

pip install --upgrade tox
tox





Py.test <https://pytest.org> is the test runner. tox commands pass through
positional arguments, so you may for example use looponfailing <https://pytest.org/latest/xdist.html#running-tests-in-looponfailing-mode>
with python 3.5, stopping at the first failing test case:

tox -epy35 -- -fx







Style and Static Analysis

All standards enforced by the underlying tools are adhered to by this project,
with the declarative exception of those found in landscape.yml [https://github.com/jquast/telnetlib3/blob/master/.landscape.yml], or inline
using pylint: disable= directives.

Perform static analysis using tox target sa:

tox -esa









            

          

      

      

    

  

    
      
          
            
  
History


	1.0.3
	
	bugfix circular reference between transport and protocol, #43 [https://github.com/jquast/telnetlib3/issues/43/] by
fried [https://github.com/fried].






	1.0.2
	
	add –speed argument to telnet client #35 [https://github.com/jquast/telnetlib3/issues/35/] by hughpyle [https://github.com/hughpyle].






	1.0.1
	
	add python3.7 support, drop python 3.4 and earlier, #33 [https://github.com/jquast/telnetlib3/issues/33/] by
AndrewNelis [https://github.com/AndrewNelis].






	1.0.0
	
	First general release for standard API: Instead of encouraging twisted-like
override of protocol methods, we provide a “shell” callback interface,
receiving argument pairs (reader, writer).






	0.5.0
	
	bugfix: linemode MODE is now acknowledged.


	bugfix: default stream handler sends 80 x 24 in cols x rows, not 24 x 80.


	bugfix: waiter_closed future on client defaulted to wrong type.


	bugfix: telnet shell (TelSh) no longer paints over final exception line.






	0.4.0
	
	bugfix: cannot connect to IPv6 address as client.


	change: TelnetClient.CONNECT_DEFERED class attribute renamed DEFERRED.
Default value changed to 50ms from 100ms.


	change: TelnetClient.waiter renamed to TelnetClient.waiter_closed.


	enhancement: TelnetClient.waiter_connected future added.






	0.3.0
	
	bugfix: cannot bind to IPv6 address #5 [https://github.com/jquast/telnetlib3/issues/5/].


	enhancement: Futures waiter_connected, and waiter_closed added to server.


	change: TelSh.feed_slc merged into TelSh.feed_byte as slc_function keyword.


	change: TelnetServer.CONNECT_DEFERED class attribute renamed DEFERRED.
Default value changed to 50ms from 100ms.


	enhancement: Default TelnetServer.PROMPT_IMMEDIATELY = False ensures prompt
is not displayed until negotiation is considered final.  It is no longer
“aggressive”.


	enhancement: TelnetServer.pause_writing and resume_writing callback wired.


	enhancement: TelSh.pause_writing and resume_writing methods added.






	0.2.4
	
	bugfix: pip installation issue #8 [https://github.com/jquast/telnetlib3/issues/8/].






	0.2
	
	enhancement: various example programs were included in this release.






	0.1
	
	Initial release.











            

          

      

      

    

  

    
      
          
            

   Python Module Index


   
   t
   


   
     		 	

     		
       t	

     
       	[image: -]
       	
       telnetlib3	
       

     
       	
       	   
       telnetlib3.accessories	
       

     
       	
       	   
       telnetlib3.client	
       

     
       	
       	   
       telnetlib3.client_base	
       

     
       	
       	   
       telnetlib3.client_shell	
       

     
       	
       	   
       telnetlib3.server	
       

     
       	
       	   
       telnetlib3.server_base	
       

     
       	
       	   
       telnetlib3.server_shell	
       

     
       	
       	   
       telnetlib3.slc	
       

     
       	
       	   
       telnetlib3.stream_reader	
       

     
       	
       	   
       telnetlib3.stream_writer	
       

     
       	
       	   
       telnetlib3.telopt	
       

   



            

          

      

      

    

  

    
      
          
            

   Index


   Index pages by letter:


   
   A
     | B
     | C
     | D
     | E
     | F
     | G
     | H
     | I
     | K
     | L
     | M
     | N
     | O
     | P
     | R
     | S
     | T
     | V
     | W
     | X
     


   Full index on one page
                                               (can be huge)

   



            

          

      

      

    

  

    
      
          
            

Index 
  
    
    
    Index
    

    

    
 
  

    
      
          
            

Index 
  
    
    
    Index
    

    

    
 
  

    
      
          
            

Index 
  
    
    
    Index
    

    

    
 
  

    
      
          
            

Index 
  
    
    
    Index
    

    

    
 
  

    
      
          
            

Index 
  
    
    
    Index
    

    

    
 
  

    
      
          
            

Index 
  
    
    
    Index
    

    

    
 
  

    
      
          
            

Index 
  
    
    
    Index
    

    

    
 
  

    
      
          
            

Index 
  
    
    
    Index
    

    

    
 
  

    
      
          
            

Index 
  
    
    
    Index
    

    

    
 
  

    
      
          
            

Index 
  
    
    
    Index
    

    

    
 
  

    
      
          
            

Index 
  
    
    
    Index
    

    

    
 
  

    
      
          
            

Index 
  
    
    
    Index
    

    

    
 
  

    
      
          
            

Index 
  
    
    
    Index
    